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Abstract The total duration of drawdowns is shown to provide a moment-free, unbiased, efficient
and robust estimator of Sharpe ratios both for Gaussian and heavy-tailed price returns. We then use
this quantity to infer an analytic expression of the bias of moment-based Sharpe ratio estimators
as a function of the return distribution tail exponent. The heterogeneity of tail exponents at any
given time among assets implies that our new method yields significantly different asset rankings
than those of moment-based methods, especially in periods large volatility. This is fully confirmed
by using 20 years of historical data on 3449 liquid US equities.
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1. Introduction

Sharpe ratios (Sharpe 1964) appear naturally in financial analysis for a good reason:
they are nothing else than signal-to-noise ratios, a fundamental quantity in signal
analysis. In a Gaussian world, they are also equivalent to the t-statistics. Finance
is not an ideal world, however, and many problems arise in practice. Sharpe ra-
tio’s distribution (Lo 2002), bias (Miller and Gehr 1978; Jobson and Korkie 1981)
and corrections due to serial correlations (Lo 2002; Mertens 2002; Christie 2005;
Opdyke 2007) have been characterized. Better estimating methods use the Gener-
alized Moments Method (Lo 2002; Christie 2005) and block bootstraps (Ledoit and
Wolf 2008). Although Sharpe ratios only depend on the first and second moments
of price returns, their variance depends on the third and fourth moments (Lo 2002;
Mertens 2002; Christie 2005; Opdyke 2007). Given the definition of the Sharpe ra-
tios, it is not surprising that all these methods rely on the computation of moments
of price returns. But as noted e.g. in Opdyke (2007), this may be problematic as the
fourth moment may not be defined (Dacorogna et al. 2001; Jondeau and Rockinger
2003). Finally, the standard estimator of the Sharpe ratio is known be biased for
heavy-tailed price returns. Once again, the corrections proposed e.g. for the Deflated
Sharpe Ratio, depend on the third and fourth moment (Bailey and Lopez de Prado
2014).

Here, I propose a new way to estimate Sharpe ratios that does not require the
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Figure 1. Example log price time series (black lines), its running maximum (blue dashed lines), and

running minimum (green dashed lines). The number of upper (lower) records R+ (R−) is equal to the

number of jumps of the running maximum (minimum) plus one since the first point counts as a record by
convention: here R+ = 4 and R− = 7. The total drawdown duration is T− = 16 and the total drawup

duration is T+ = 13. Clearly, R+ + T− = R− + T+ = 20 + 1, the number of returns plus one.

computation of any moment and that may be extended to estimate the drift of time
series with infinite variance. It is based on the fact that the total duration of all
drawdowns in a price time series of a given length is a monotonic function of the
Sharpe ratio; by symmetry, the same holds for the total duration of all drawups.
As a consequence, one may estimate Sharpe ratios by computing the difference
between the total durations of drawups and drawdowns. This quantity is bounded
by definition and leads to an estimator that is both robust to outliers and more
efficient than direct estimates of Sharpe ratios for heavy-tailed data.

Above all, the new estimator is unbiased for heavy-tailed data, in contrast to the
standard estimation method. Even more, we propose that the Sharpe ratio depends
in a simple way of total drawdown durations and return distribution tail exponent,
which allows a direct estimation of the bias of the moment-based estimator at fixed
total drawdown duration length. This gives a new take on asset ranking: because
all the asset price return distributions have different tail exponents at any point in
time, the new method yields considerably different asset rankings, especially at the
top and bottom quantiles, and during the most volatile periods. Thus this paper
contributes both theoretically and empirically to the on-going debate about the
relevance of the ranking method (Eling and Schuhmacher 2007; Zakamulin 2010;
Schuhmacher and Eling 2011; Ornelas, Silva Júnior, and Fernandes 2012; Auer and
Schuhmacher 2013a,b)

Intuitively, the sum of all drawdown durations, i.e., the total drawdown duration
of a time series of fixed length, is linked to the number of upper price records since a
new price return pushes the price either to an all time high (a new upper record) or
to a drawdown (see Fig. 1). This implies that if n is the length of a price time series
and R+ is the number of its upper records (R+ ≥ 1 because the first point is a record
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by convention), the total drawdown duration, denoted by T−, is T− = n− (R+−1).
Because of this equivalence, total drawdown/up duration and the numbers of price
records lead to two equivalent estimators; accordingly, we will use either wordings.
Assuming that log prices are simple random walks, drawdown/up durations are
determined by first-passage times, themselves derived from persistence (or survival)
properties (Redner 2001). The connection between persistence and price dynamics,
especially in the context of market microstructure, is well known (Lo, MacKinlay,
and Zhang 2002; Eisler et al. 2009).

Persistence is at the core of a noteworthy recent result about discrete-time unbi-
ased random walks. In a financial context, it may be stated as follows: the distribu-
tion of the number of upper (or lower) records of a price time series with independent
and identically distributed return (i.i.d.), of a fixed length, does not depend on the
increment distribution provided that the latter is symmetric and continuous (Ma-
jumdar and Ziff 2008). This universality is behind the robustness and power of the
r-statistics, a family of statistics based on the number of records of a time series,
which not only provides a powerful non-parametric location test (Challet 2015) but
also, as shown here, an efficient estimator of Sharpe ratios. Their robustness come
from the fact that the influence of outliers is much dampened because sample values
are transformed into an integer number with bounded admissible values.

Majumdar, Schehr, and Wergen (2012) show that the distribution of the number
of records converges to a Gaussian distribution in the limit of infinitely long time se-
ries provided that the price return distribution has a finite variance. Even better, the
support of the finite-size sample distribution of the new estimator is bounded, con-
trarily to that of Sharpe ratios (and t-statistics), and is accordingly more peaked
than a normal distribution (Challet 2015). When the true Sharpe ratio is differ-
ent from zero, the expected number of records and its variance are distribution-
dependent; exact expressions are only known for exponentially distributed incre-
ments, hence one has to resort to approximations and numerical simulations for
other types of distribution in the limits of large and small Sharpe ratios.

Drawdown durations are by definition integer numbers, which is not optimal to
estimate a real number. The solution comes from random permutations. Assuming
that the price returns are i.i.d., one can shuffle their order at will and compute the
resulting price time series, which is an equally valid representation of a given set of
price returns and most likely have a different number of upper and lower records.
Thus, to obtain a more precise estimate of the Sharpe ratio, one takes the average
of the difference between the total drawdown and drawup durations over many such
permutations (see Fig. 3 for a graphical explanation).

The structure of this paper is as follows: Section 2 introduces the necessary no-
tations to define price record statistics and shows that when prices have a positive
trend, heavy-tailed increments lead to a larger number of upper price records than
Gaussian increments; a mathematical derivation of the expected number of price
records for Student’s t-distributed increments is reported in Appendix A, which
focuses on the case of tail exponent equal to 4 (3 degrees of freedom) for the sake
of analytical tractability. Section 3 investigates the efficiency of the number of price
records as Sharpe ratio estimators relative to the vanilla estimator and shows that
the new estimator is several times more efficient than moment-based methods for
heavy-tailed variables and almost as efficient as the vanilla estimator in the case
of Gaussian variables; it then derives a simple equation that simplifies the calibra-
tion of the relationship between true Sharpe ratio and estimated tail exponents and
number of records. Section 4 uses an unbiased historical data set of 3449 liquid US
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equities to estimate 100-day rolling Sharpe ratios with both methods. It turns out
that in leptokurtic times, the estimates from both methods may differ very signifi-
cantly because the vanilla Sharpe ratio estimator is not only more volatile, but also
systematically overestimates the information content of price time series that have
heavy-tailed returns.

2. Record statistics of random prices

Financial data exist in discrete time, which will be the point of view adopted in this
paper. Let us assume that the initial log price is S0 = 0 and that its value at time
k > 0 follows

Sk = Sk−1 + rk + c (1)

where rk is the increment at time k, assumed to be identically and independently
drawn from a continuous distribution P (r), and c is a constant trend. Let the
running maximum Mk = max1≤t≤k St (see Fig. 1). The number of upper records of
a time series of length n is the number of jumps of Mn, which by convention always
includes M1; it will be denoted by R+ and its distribution by P (R+, n). In the same
spirit, one defines R−, the number of lower records, as the number of jumps of the
running minimum.

Majumdar and Ziff (2008); Le Doussal and Wiese (2009); Majumdar, Schehr, and
Wergen (2012) demonstrate that many quantities of interest are fully characterized
by the persistence function q−(n) of the process, i.e., the probability that the price
has never exceeded its starting value after n steps. It is advantageous to work with
its characteristic function q̃−(z) =

∑
n>0 z

nq−(n).
For example, the characteristic function of P (R+, n) is (Majumdar and Ziff 2008)

P̃ (R+, z) = q̃−(z)[1− (1− z)q̃−(z)]R+−1,

while the characteristic function of the expected number of upper records m+(n) =
E(R+)(n) can be written as m̃+(z) = [(1 − z)2q̃−(z)]−1 (Le Doussal and Wiese
2009).

Generalized Sparre Andersen theorem (Andersen 1953; Feller 2008) provides a
constructive way to compute q̃−: for any continuous and symmetric P (r),

log (q̃−(z)) =

∞∑
n=1

zn

n
P (Sn < 0). (2)

2.1 Driftless prices

A direct consequence of this theorem is the universality of the unbiased case c = 0
since P (Sk < 0) = 1

2 for all symmetric and continuous distributions, as indeed
q̃±(z) = q̃(z) is the same for all such distributions and

P (R,n) =

(
2n−R+ 1

R

)
2−2n+R−1,
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where R may either be R+ or R−, by symmetry (Majumdar and Ziff 2008). This
implies that the first two moments of this distribution are

E(R±)(n) ' 2

√
n

π
, and E[((R± − E(R±))2](n) ' (2− 4/π)n.

2.2 Limit of small relative drift

Analytical results are harder to obtain in the case of non-zero drift (c 6= 0) since
Sparre Andersen theorem requires the full knowledge of all convolutions of the
elementary increments. Denoting the standard deviation of the increments rk by
σ, good approximations of the expected number of upper records are known for
Gaussian increments in the limit of small relative drift, i.e., when c/σ � 1 and
n � 1 while cn/σ � 1 (Wergen, Bogner, and Krug 2011; Majumdar, Schehr, and
Wergen 2012):

E(R+)(c/σ, n) ' 2

√
n

π
+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]
. (3)

The case of heavy-tailed increments with finite variance has not been thoroughly
investigated. We will focus on Student’s t-distributions because of their abilities
to reproduce both fat-tailed and Gaussian returns. They are known to describe the
unconditional price return distribution (i.e., forgetting about volatility heteroskedas-
ticity) (Bouchaud and Potters 2000; Longin 2005; Opdyke 2007) and innovations
(see e.g. Bollerslev (1987)). Let us therefore assume from now on that the price
returns rk are distributed according to a Student’s t-distribution of variance σ2

with ν degrees of freedom (we use this wording only to parametrize the return dis-
tribution), denoted by P (r). Sparre Andersen theorem requires the knowledge of
the n-time convoluted return distribution, denoted by P (n)(r), of which no explicit
expression exists for generic values of n and ν. In passing, P (n)(r) can be explicitly
computed for any value of n provided that ν is odd but the expressions quickly
become cumbersome as n grows (Nadarajah and Dey 2005). This is why we shall
resort to approximations.

Appendix A reports approximate analytical results for the case ν = 3, i.e., for a
tail exponent of 4.1 The resulting expected number of upper records becomes, in
the same limit c/σ � 1 and n� 1 while cn/σ � 1,

E(R+)(n, c/σ) ' 2
√
n√
π

+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]

+
c

σ

8√
3π3/2

√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)
. (4)

Although a first order expansion, Eq. (4) is not very accurate even in the limit of
small n(c/σ), because the approximations needed to obtain explicit equations are
quite rough (see Fig. 2). However, it was worth computing it for several reasons.

1This precise value is the only one for which analytical computations seem workable. It also happens to be

in line with the average tail exponent of US equities daily and intraday price returns (Jansen and De Vries
1991; Plerou et al. 1999; Bouchaud and Potters 2000; Longin 2005).
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Figure 2. Excess number of records E(R+|c/σ, n)− E(R+|0, n) for biased random walks with Student-t

increments (ν = 3). Interrupted lines are theoretical predictions and continuous lines are from numerical

simulations. c = 0.001, σ = 1, averages over 107 samples.

First, it contains the correct dependence of E(R+)(n, c/σ) on n for small Sharpe ra-
tios, which means that one may use this functional form to fit numerical simulations.
Second, the presence of the third term, due to the difference between Gaussian and
t-distributions at the origin, correctly implies that the prices with positive trends
and heavy tails (and small Sharpe ratios) have a larger expected number of price
records, which emphasises the importance of accounting for the tails of price return
distributions when using price records to estimate Sharpe ratios (cf. section 3).

Appendix B contains the derivation of E(R+)(n, c/σ) in the large relative drift
limit, i.e., c/σ � 1 and n � 1. In this case, the expected number of records grows
linearly.

It is noteworthy that these limits do not unequivocally correspond to small and
large Sharpe ratios, since the limits do not involve n1/2 but n. The small effective
drift limit can be rewritten as c/σ

√
n � 1/

√
n, which correspond to vanishingly

small Sharpe ratios, of little relevance to Finance; there is no guarantee that the
very large c/σ limit corresponds to realistic situations. Thus, depending on both c/σ
and n, one may be close to either limit, or in a no limit’s land. As a consequence,
the next section resorts to extensive numerical calibration.

3. Moment-free Sharpe ratio estimator

As shown by Majumdar, Schehr, and Wergen (2012), the expected number of records
is a monotonous function of the ratio c/σ, hence, of the Sharpe ratio. In other words,
there is a one-to-one correspondence between the two quantities. This implies that
it is possible to estimate Sharpe ratios from the number of upper or lower records.
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Figure 3. Schematic explanation of the idea behind the permutation estimator of Sharpe ratios: one

computes the difference between total drawup and drawdown durations, or equivalently, the number of
jumps of the running maximum (dashed lines) and the number of jumps of the running minimum (dotted

lines) of the cumulated sums of the sample values, averaged over many random permutations of the price
returns. By convention, the first point counts as a first record for both the running maximum and minimum.

More precisely, we have

E(R+) = F+(c/σ), (5)

which implies that

ˆ( c
σ

)
= F−1

+ (R̂+). (6)

Because of the lack of exact results, we shall use numerical simulations to calibrate
F .

The main problem of a number of records is that it is an integer number by defi-
nition, which yields an estimator with unacceptable precision for short time series.
The fundamental idea of the r-statistics (Challet 2015), in this context, consists in
assuming that its log returns are i.i.d.. In that case, one may build many other log
price paths based on random permutations of the original returns and thus measure
the average number of records of the cumulated sums over many permutations (see
Fig. 3) (this scheme may be extended to correlated time series). Mathematically,
denoting the random permutation of index i ∈ {1, · · · , n} by π(i) and the ensemble
of all permutations by Π, the average number of records is R̄+ = 1

|Π|
∑

π∈ΠR+,π

where R+,π is the number of upper records of Sn,π =
∑n

m=1 rπ(m). In practice, one
restricts computations to a subset of Π for the sake of computational tractability,
which has little influence on the end result; in this study, we have used 1000 random
permutations. The new Sharpe ratio estimator is then based on R0 = R̄+ − R̄−.
More precisely, the idea is to first calibrate the relationship E(R0) = F0(c/σ, n) at
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Figure 4. Efficiency of the record-based estimator θ0 relative to that of the vanilla estimator, defined by
the ratio of the variance of the new estimator θ0 and the usual one θS as a function of the true Sharpe ratio

c/σ of the synthetic data. Averages over Navg = 106 samples per point; record numbers have been averaged

over 1000 permutations; left plot: Student-distributed increments with tail exponent set to 4; right plot:
Gaussian increments.

fixed c/σ for a given distribution of synthetic price returns. Denoting θ = c/σ, one
then inverts this relationship to obtain

θ̂ = F−1(R̂0, n). (7)

Estimation in the rest of this paper is based on extensive numerical simulations to
establish the relationships E(R0) as a function of parameters n, θ, and the Student
parameter ν. We chose ν = {2.5, · · · , 10} with increments of 0.1, 10 < n < 375 by
steps of 5 and n = 504; we take 31 values of θ ∈ [0.001, 1] growing according to
a geometric series. For each triple (n, θ, ν), we generate Navg synthetic time series,
estimate R0 over 1000 random permutations for each time series and then average
R0 over the Navg time series. Splines are then used to fit and invert the relationships
of Eq. (7).

3.1 Efficiency

Moment-based estimators have a hard time with heavy-tailed data. It is thus clear
that their precision, i.e., efficiency, suffer from heavy tails. The new estimator, on
the other hand, is likely to be less affected by the latter.

In order to compare their respective efficiency, let us denote by θ0 the Sharpe
ratio inferred from R0. The standard deviation of θ0, denoted by σθ, is obtained
by the method of Deltas, i.e., from the relationship σθ = σR

1
dE(R0|n,θ)

dθ

where σR is

the standard deviation of R0; the numeric derivative of E(R0|n, θ) was computed
numerically with splines. The relative efficiency of θ0 with respect to the straight-
forward estimator θS = µ̂/σ̂ is then defined as ρ = σ2

S/σ
2
R where σS is the standard

deviation of θS . Left plot of Fig. 4 reports the relative efficiency of θ0 for various n
for Student’s t-distributed returns and ν = 4. The new estimator is unambiguously
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Figure 5. True Sharpe ratio versus Student tail index ν for R0 = 40 and 50 (circles and lozanges,

respectively) for time series of length 252. The continuous lines are least-squares regressions to Eq. (8).

The horizontal dashed line reports the value of the true Sharpe ratio for Gaussian increments (ν → ∞)
and R0 = 40, while the vertical one stands at ν = 5.2, which is the threshold at which the respective rank

switches if a time series with R0 = 40 and ν =∞ is compared with one with R0 = 50 and with exponent ν.

more powerful than the vanilla estimator. This result holds as long as the returns
are heavy tailed.

Financial price returns are not heavy tailed all the time. Thus it is important to
check the efficiency of record statistics for log prices with Gaussian increments. Since
the vanilla estimator is asymptotically optimal in this case (Neyman and Pearson
1933), any other estimator is bound to be less efficient for large n. The right hand
side plot of Fig. 4 plots the relative efficiency of θ0 for Gaussian increments, which
depends on c/σ. Remarkably, θ0 may be slightly more efficient than the t-statistics
itself for small n.

3.2 Dependence on Student tail exponent

Although only the ν = 3 was studied analytically above, as it leads to workable
expressions, the relationship between E(R0) and the Sharpe ratio of increments
with a Student’s t-distribution depends on ν. As a consequence, at fixed n and R0,
the estimated Sharpe ratio also depends on ν. Extensive numerical simulations (see
Fig. 5) with Navg = 105 show that, at fixed R0 and n,

Eν(θ̂) = a(R0, n)− b(R0, n)ν−3/2, (8)

where a(R0, n) = E∞(θ̂) corresponds by definition to the average (and unbiased)
Sharpe ratio of a process with Gaussian increments (ν →∞).

In addition to providing a simple way to extend the inference of the Sharpe ratio
for arbitrary large values of ν from a finite interval of ν, this equation quantifies
the bias of an estimation of Sharpe ratios if one neglects the effect of non-Gaussian

9
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returns. Indeed, the estimation of R0 does not require any assumption about the
underlying increment distribution, only the connection to the Sharpe ratio does.
This means that estimating Sharpe ratios requires estimating ν, and that assuming
ν =∞, as the vanilla method does, overestimates the true value of the Sharpe ratio
as soon as the price return distribution has fatter tails than a Gaussian one. As a
consequence, results about the equivalence of ranking from various methods only
hold if all the assets have the same tail exponent. This point is further discussed in
section 4.1.

3.3 Simplified estimation

Equation (8) provides a great complexity reduction in the estimation of the Sharpe
ratio, but estimation may be further simplified by studying the dependence of both
a and b on R0 and n. We choose values of R0 from 1 to n, and inferred the cor-
responding values of θ thanks to the calibrated relationships of Eq. (7). Then, at
fixed n, we choose a value R0 and perform the non-linear fit of Eq. (8), which yields
a(R0, n) and b(R0, n). We then filter out fits whose p-value associated with b is
larger than 0.01 and whose average square residual is larger than 0.1, which only
happens in regions with large n and small R0 (in other words, where θ̂ = 0 is a
fairly good approximation of the true Sharpe ratio). This leaves 13282 values of a
and b, one for each remaining couple (R0, n).

Let us start with a = E∞(θ̂). Left plot of Fig. 6 shows that a(R0, n) = a(R0/n)
for n > 100: the collapse, while not perfect, is remarkable (there are 12645 points in
this figure). In other words, R0 ' γn with fixed γ at least for n > 100 and θ > 0.001
(a t-statistics of 0.01), as in the large θn limit, although nθ = 0.1 in this case is
far from being large. Figure 6 also makes it clear that 1 − R0/N decreases faster
than an exponential, which makes sense since it asymptotically follows a Gaussian
function (cf. Appendix B). Note that the scaling R0 ∝ n assumes that price returns
do have a trend. In other words, the Sharpe ratio in the region where R0 ∝

√
n will

be under-estimated, but they correspond to negligible trends.
Let us now turn to b(R0, n). It turns out that there is a linear relationship b ' 8/3a

in the region a < 1 (see the right plot of Fig. 6), the collapse being remarkable. This
region is relevant to Finance: for example, if a = 1, and n = 100, the t-statistics
would be 10, a rarity. Thus, the whole calibration may rest on the determination of
a(R0/n), since

θ̂ ' a(R̂0/n)

[
1− 8

3
ν̂−3/2

]
(9)

As a is a smooth function, we first round R0/n to a precision of 0.01, and com-
pute the average of a(r) where r is the rounded value of R0/n. Finally, a spline is
calibrated on this coarse-grained relationship, with the additional the coordinates
(0,0) for the sake of convergence for very small values of R0/n. Thus, simple scaling
arguments made it possible to build an numerical estimation method for any n, ν
and R0 that rests on a single function.
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Figure 6. Left plot: collapse plot showing the scaling relationship between a = E∞(θ̂) and R0/n for 12465

couples (R0, n), with 100 < n < 504; the y axis is in log scale. Right plot: b as a function of a, and a linear

fit b ' 2.67a for a < 1; same parameters as in the left plot.

4. Application to real data

The i.i.d. assumption is totally unrealistic regarding asset price returns, if only
because of volatility heteroskedasticity. Applying straightforwardly the above esti-
mator would therefore make little sense on long time series. The approach followed
here is to consider smaller time windows and to assume that stationarity approxi-
mately holds in each time window. The second current limitation of the proposed
estimator to keep in mind here is that it does not account explicitly for skewness.
At any rate, this section is meant to provide a clear illustration of how different the
estimates of both methods may be.

In order to find the corresponding Sharpe ratio, we assume that price returns are
conditionally leptokurtic (Bollerslev 1987): in each time window, we fit the returns
with Student’s t-distribution by maximum likelihood and obtain an estimate ν̂ and
use Eq. (9).

Figure 7 shows the difference between annualized Sharpe ratios of SPY estimated
with the new and vanilla estimator. When ν is larger that 10, both estimators yield
almost the same Sharpe ratio, as expected from Eq. 8. On the other hand, when
tails are heavier, i.e. when ν < 10, the two estimates significantly differ. Indeed, the
new term in Eq. (4) with respect to Eq. (3) implies that vanilla estimates are too
large in absolute values. This is confirmed in Fig. 8. The difference between both
estimates is very large in leptokurtic times, e.g. in 2008 and 2009; in addition, in
these difficult times, the new estimator is clearly less volatile, which is in line with
its better efficiency.

As a side note, the fact that the moment-based method overestimates the Sharpe
ratio (and the t-statistic) in leptokurtic times means that using it for trading
purposes leads to taking wrong trading decisions more often (the power of the r-
statistics is indeed much larger than that of t-statistics for heavy-tailed data (Challet
2015)). Let us try the following naive trading strategy (without transaction costs):
whenever the estimated annualized Sharpe ratio is larger than 1 in absolute value
in the last 100 close-to-close price returns, one takes a long or short single-day po-
sition, depending on the sign of the Sharpe ratio (with a one day lag). We use an

11
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Figure 7. Left plot: parametric fit of the number of degrees of freedom of Student’s t-distribtuion in
a sliding window of 252 close-to-close returns of SPY. Right plot: estimated Sharpe ratios with the new

estimator and from a vanilla estimation. 1000 permutations have been used to estimate R0.
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Figure 8. Discrepancy of the estimates of the annualized Sharpe ratio of SPY with moving time windows

of 252 days between the new and the vanilla estimators. 1000 permutations have been used to estimate R0.

unbiased historical data set of US equities (1995-01-01 to 2015-06-30) and focus on
liquid assets, i.e. whose price is larger than $20 and 60-day rolling median daily
volume is larger than 250000 shares. Figure 9 reports the cumulated performance
of this strategy when applied to all 3449 US equities for the period . The difference
of performance between the two methods is marked in times of large fluctuations
(e.g. 2008). Note that the y-axis of this plot is logarithmic so as to avoid fooling
the reader (McLean 2011); in addition, it should be noted that the out-of-sample
performances plotted in Fig. 9 is the result of 3449 decisions at each time step, i.e.,
very many decisions. As a consequence, the origin of the difference of performance
between the new and vanilla methods is the relative power of the related statistical
tests (Challet 2015), not an erroneous way of computing compounded returns.
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Figure 9. Cumulated performance of a trading strategy consisting in investing when the estimated annu-

alized Sharpe ratio is larger than 1 in absolute value; short positions are allowed in case of negative Sharpe

ratio; estimates over rolling windows of 100 trading days (close-to-close price returns). Unbiased historical
database of 3449 US liquid equities. 1000 permutations have been used to estimate R0.

4.1 Ranking assets

It is worth discussing the relevance and practical value of the proposed Sharpe
ratio estimator beyond its much improved precision in leptokurtic times and the
appreciable fact that it is unbiased. The industry is not only interested in the
actual Sharpe ratio values of a group of assets (stocks, hedge funds, etc.), but also
in ranking them. Thus, an important question is to assess whether the new method
ranks assets in a different way than vanilla Sharpe ratio estimation. If this is clearly
not the case, by extension, the new method brings a valuable alternative way to
rank assets.

Two preliminary remarks. First, the fact that both methods estimate the same
quantity, but that one method is clearly much more efficient for non-Gaussian vari-
ables implies that the correlation of the asset ranks cannot be 1 because of the
greater fluctuations of the vanilla estimator. Second, as explained above, the Sharpe
ratio corresponding to an estimated R0 depends on the tail index of the Student
distribution. Since the new method is unbiased and the vanilla one is biased for
heavy-tailed distribution, and since the estimated tail exponents at any given time
will vary from asset to asset, one cannot expect the two methods to yield on average
equivalent ranking, even asymptotically. In other words, the location-shape argu-
ment of Schuhmacher and Eling (2011) does not hold for assets with heterogeneous
tail indices, as noted e.g. in Zakamulin (2010).

Let me take an example: looking once again at Fig. 5 makes it clear that the
ranking of R0, i.e., of the vanilla estimation method, may not be the same one as
the ranking according to the new method. Assume that asset 1 has R0,1 = 40 and
asset 2 R0,2 = 50; neglecting the fact that ν1 < ∞ and ν2 < ∞ is quite possible,
the vanilla method attributes a better rank to asset 2. Now, say ν1 = 10; as soon as
ν2 < 4.4, asset 1 must be attributed a better rank than asset 2 (provided that the

13
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Figure 10. Left: evolution of the fraction of common assets between rankings for the moment-free and
vanilla Sharpe ration estimation methods; black lines: top 5% positive ratios, red lines: smallest 5% ratios;

calibration over 100 days; unbiased historical database of 3449 liquid US equities. Right: effective measure

of average (red lines) and standard deviation (black lines) of tail exponents as a function of time for the
3449 US equities.

estimations of the tail exponents are precise enough).
All the above shows the crucial role of ν and sheds a new light on the debate

on whether all risk measures are equivalent asymptotically or not. The point is
that many of them may be biased for non-Gaussian variables in an equivalent way.
For example, Auer and Schuhmacher (2013b) find that the rankings of hedge fund
performance with the largest Sharpe ratios are most stable. But its results rest on
measures that overestimate Sharpe ratios for heavy-tailed returns; thus, as sizeable
fraction of these large Sharpe ratios may simply be the results of the methods’
biases.

Let me first focus on the 5% best and worst estimated Sharpe ratios. Figure 10
(left plot) shows that the fraction of common assets in these centiles is significantly
different from 1, except notably for positive Sharpe ratios in 2008. As expected, this
fraction decreases when the heterogeneity of tail exponents increases (right plot).

As expected, rankings differ more for assets with a small ν, i.e., with heavy tails.
Left plot of Fig. 11 reports the time evolution of Spearman and Kendall rank cor-
relation of all the assets for both methods. As in Auer and Schuhmacher (2013b),
an alternative rank correlation measure (Blest 2000; Genest and Plante 2003), more
sensitive to the rank of the largest values of data, is displayed in the right hand side
of this figure; it is slightly above zero on average, with large fluctuations in 2003
and 2009, which echoes the decrease of both Spearman and Kendall correlations at
those dates, but not at other dates. Thus, ranking equities with usual moment-based
methods or the new moment-free method may yield very significantly different re-
sults in the case of daily price return of equities. Hedge fund performance returns
have a monthly resolution and are thus much closer to Gaussian variables, owing to
the central limit theorem (see e.g. Bouchaud and Potters (2000)), which may also
explain why previous studies did not find striking differences of ranking for most
performance measures.
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Figure 11. Spearman, Kendall (left plot) and Genest-Plante-Blast (right plot) rank correlations between
the ranks of the Sharpe ratios obtained by record statistics and the usual method as a function of time

(black lines: positive Sharpe ratios, red lines: negative Sharpe ratios). Sliding calibration windows of 100

days.

5. Discussion

The proposed Sharpe ratio estimator is robust, efficient, and well-behaved as it
does not rely on moment estimation. Large returns are not regarded as outliers, but
contribute to record statistics in a smooth way. In addition, a real outlier (due e.g.
to a data error, or a neglected corporate action) may only create a single spurious
additional price record, while two outliers of the same magnitude and opposite signs
have only a mild influence on R0. Finally, the robustness of the estimator lies in
the fact that the latter is based only on the duration of drawdowns, not on their
amplitudes. This is to be contrasted with other quantities related to drawdowns.
For example the expectation of the maximum drawdown of a Brownian motion is a
known function of the Sharpe ratio (Magdon-Ismail et al. 2003), but is very sensitive
to outliers by definition.

Because of the lack of exact results, using this estimator requires for the time
being numerical calibration, which has been much simplified by scaling arguments.
Estimating Sharpe ratios with price record/drawdown statistics is not limited to
Student’s t-distributed returns, as indeed one may calibrate their relationships for
any return distribution with finite variance. In addition, the method introduced in
this paper provides a generic way to build many types of estimators with record
statistics as long as the relationship between price record statistics and the measur-
able to estimate is monotonic. For example, it may be used to estimate the drift of
a Lévy process.

The main limitations of the proposed estimator are the assumptions of i.i.d and
symmetric increments. Both can be accounted for numerically for the time be-
ing. An interesting challenge is to incorporate serial correlations into the analytical
computation of record statistics: numerical results point to simple corrections in
the case of AR(1) and GARCH(1,1) models (Wergen 2014). Practically, a way to
respect return auto-correlation and volatility heteroskedasticity is to use a kind of
block-bootstraps, as in Ledoit and Wolf (2008).
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An R package entitled sharpeRratio implements the new estimator and is avail-
able on CRAN at https://cran.r-project.org/web/packages/sharpeRratio/

index.html; a Python version is available at PyPi https://pypi.python.org/

pypi/pysharperratio/0.1.10.
An interactive webpage which reproduces the plots of Section 3 for any asset

symbol and time period may be found at
https://brillant.shinyapps.io/moment-free_Sharpe_ratio .

Appendix A. Expected number of records in the vanishing Sharpe ratio
limit for Student’s t-distributed price returns

In this limit, one may use a first order expansion of the reciprocal cumulative func-
tion

P (Sn > 0) =
1

2
+ P (n)(0)cn+O([cn]2). (A1)

One therefore needs to compute P (n)(0). Since the increments are assumed to be
independent,

P (n)(0) =
1

2π

∫ ∞
−∞

φ(n)(t)dt =
1

2π

∫ ∞
−∞

[φ(t)]ndt,

where φ(n)(t) is the characteristic function of P (n)(x), and φ(t) that of P (1)(r) =
P (r). Equation (A1) requires the computation of P (n)(0), which is impossible for
any n and ν. However the ν = 3 case leads to workable expressions. One finds
P (n)(0) = en

σπE−n(n), where En(z) is the exponential integral function. The specific
form n = −z of the exponential integral function is easy to compute in a recursive
way by integration by parts:

E−k−n(k) =
e−k

k
+
k − n
k

E−(k−n−1)(k)

E0(k) =
e−k

k
.

Therefore, after some elementary computations, E−n(n) = e−n

n
n!
nn

(∑n
s=0

ns

s!

)
and

P (n)(0) =
1

σπ

1

n

n!

nn

n∑
s=0

ns

s!
. (A2)

Using the asymptotic expansion Kn =
∑n

s=0
ns

s! = en[1
2 +

√
2

3π
1√
n

+O(n−1)] and

the usual Stirling expansion, Eq. (A2) becomes P (n)(0) = 1
σ

1√
2πn

+ 2
σπ
√

3n
+O(n−3/2)

and thus, in the case of small drifts, Eq. (A1) reads

P (Sn > 0) =
1

2
+
c

σ

2

π
√

3
+
c

σ

√
n

2π
+O(n−1/2).
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Higher-order expansions of Kn and n! contribute terms of order n−1/2 that are
negligible. It is noteworthy that the additional correction for Student increments
does not depend on n; accordingly, it is relevant for any value of n and has a larger
relative weight for smaller n; this is consistent with the fact that convolutions of
Student’s t-distributions with ν = 3 converge to a Gaussian distribution. Sparre
Andersen theorem yields

q̃−(z) =
1√

1− z

(
1 +

∞∑
n=1

c

σ

zn√
2πn

)
− c

σ

2

π
√

3

log(1− z)√
1− z

+O[(c/σ)2]. (A3)

The generating function of the number of records is then (Le Doussal and Wiese
2009)

m̃+(z) ' 1

(1− z)3/2

[
1 +

c√
2πσ

∞∑
n=1

zn√
n
− 2c

σπ
√

3
log(1− z)

]
.

The two first terms in the brackets are the same ones as those of Gaussian biased
random walks (Majumdar, Schehr, and Wergen 2012). The third term is new and
due to the difference between a Gaussian and a t-distribution at the origin. Whereas
until this point the approximations are controlled, current literature on this topic
goes one step further: asymptotic results are (very) roughly obtained by approx-
imating divergent partial sums. This captures the way the sum diverges, without
much control over the precision of the prefactor. At any rate, as the prefactor is not
essential to our purpose, we have followed the same route, which yields

− 1

(1− z)3/2
log(1− z) ' 2√

π

∑
n≥1

[
2
√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)]
zn, (A4)

which is not a very good approximation even for large n but gives the correct
asymptotic

√
n dependence, with an additional logarithmic correction brought by

atanh
√

1− 1
n −

√
1− 1

n . Finally, approximating n by n− 1 as in Wergen, Bogner,

and Krug (2011) and identifying each term of the generating function with the value
of n one is interested in gives

E(R+)(c/σ, n) ' 2
√
n√
π

+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]

(A5)

+
c

σ

8√
3π3/2

√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)
.

Given its derivation, this formula is relevant in the limit cn � σ and large n, or
equivalently c/σ

√
n� 1/

√
n, i.e., in the limit of vanishingly small Sharpe ratios.
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Figure B1. Limiting n0 as a function of c/σ, from Eq. (B1). Convoluted Student’s t-distributions may be

approximated by a Gaussian distribution below the continuous line, and by a power-law above this line.

Appendix B. Expected number of price records in the large cn/σ limit

The cn/σ � 1, n � 1 limit also makes it possible to derive some analytical in-
sights. Majumdar, Schehr, and Wergen (2012) give results for large, but not too
large, cn/σ. Indeed, the central limit theorem states that the convergence of the
distribution of convoluted variables to a Gaussian distribution occurs from the cen-
ter of the distribution. This implies that the tails of any non-Gaussian distribution
are non-Gaussian. Thus, intuitively, when cn/σ is large enough (whose meaning will
be discussed below), P (xn < cn) comes from the non-Gaussian tails. This will lead
to markedly different results for Student’s t-distributions since the tails of convo-
luted t-distributions keep their power-law nature. Bouchaud and Potters (2000) give

an intuitive argument to compute the n-time convoluted return r
(n)
0 at which the

Student and Gaussian parts of the distribution have equal importance and find that

r
(n)
0 ' σ

√
n log n for ν = 3. This means that the value of n0 at which the power-law

tail starts to prevail is such that cn0 ' σ
√
n0 log n0, i.e.,

c

σ

√
n0 '

√
log n0. (B1)

Since the convoluted distribution has a continuous first derivative, there is no
sharp transition between the Gaussian and power-law regimes, hence n0 only ap-
proximately indicates where the Gaussian approximation begins to break down.
Figure B1 plots n0(c/σ) and shows these two regions. In the region well below the
line, a Gaussian approximation holds for Student convolutions. Reversely, when
n� n0(c/σ),

P (Sn < 0) '
∫ ∞
cn

2σ3n

πx4
dx =

(σ
c

)3 2

3πn2
,
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hence log (q̃−(z)) =
(
σ
c

)3 6
√

3
π

∞∑
n=1

zn

n3 , thus

m̃+(z) =
1

(1− z)2
exp

[
−
(σ
c

)3 2

3π
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n=1

zn

n3

]
' 1

(1− z)2
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1−

(σ
c

)3 2

3π

∞∑
n=1

zn

n3
+O

[( c
σ

)6
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Finally, one finds without major difficulty

m̃+(z) '
∑
n≥0

[
(n+ 1)

(
1−

(σ
c

)3 2

3π
K[1 +O(n−1)

)]
zn

and

m+(n) ' n
[
1−

(σ
c

)3 2

3π
K

]
.

Numerically, K ' 1.202 ' 6
5 for large n; approximating sums with integrals yields

the very different K = 1/2. Thus the number of records increases linearly for large

n m+(n) ' nµStudent with an asymptotic rate given by µStudent ' 1 −
(
σ
c

)3 4
5π , to

be compared with µGauss ' 1 − σ
c

1√
2π
e−

c2

2σ2 . Figure B2 plots the difference of the

record rate between Gaussian- and Student’s t-distributed (ν = 3) increments as
a function of c/σ. Whereas the number of records of random walks with Student
increments are larger than those with Gaussian ones for small Sharpe ratios, Fig.
B2 shows, somewhat surprisingly, that Gaussian increments lead to a larger rate of
records for very large Sharpe ratios.
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